Conversion of oleic acid model compound to biolubricant base oil using Al2O3 supported metal oxide catalyst

Authors

DOI:

https://doi.org/10.11113/mjcat.v2n2.58

Keywords:

Lubricant base oil, Deoxygenation, Esterification, Alumina catalyst support, Waste cooking oil

Abstract

Vegetable oil is commonly used as a feedstock in the lubricant industry, however recent research discovers that introduction of ester in biolubricant base oil helps enhance lubricant properties as the polar ester group is able to adhere efficiently to metal surface of lubricating system. Hence, this study focus on screening of an acid catalyst suitable for both deoxygenation and esterification for the production of hydrocarbon – ester mixture as biolubricant base oil. Alumina supported metal oxide catalysts, M/Al2O3 were prepared via wetness impregnation method, where M is copper (Cu), nickel (Ni), cobalt, (Co), molybdenum (Mo), and chromium (Cr). The physicochemical properties of prepared catalysts were studied via Thermo-gravimetric Analysis (TGA), X-ray Diffraction (XRD), X-ray Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infrared Spectroscopy (FTIR).   XRD reveals high crystalline structure for Cu/Al2O3 and Mo/Al2O3. FESEM illustrates that Mo/Al2O3 has the most uniform distribution of metal oxides over alumina catalyst support. TPD-NH3 reveals that after impregnation of Mo on Al2O3, there is a significant increase in acid sites of catalyst. The catalytic activity were studied via deoxygenation (5 wt. % catalyst, 3 h, 330 °C) and esterification (10 wt. % catalyst, 6 h, 70 °C and 15:1 molar ratio of methanol:oleic acid) reaction. The product selectivity and yield were determined using Gas Chromatography – Mass Spectrometry (GC-MS). The catalyst selectivity of the deoxygenated products toward n-C17 are arranged in the order of Mo/Al2O3 > Ni/Al2O3 > Co/Al2O3 > Cr/Al2O3 > Cu/Al2O3. As for esterification, the catalytic activity is arranged in the decreasing order of Mo/Al2O3 > Cr/Al2O3 > Co/Al2O3 > Cu/Al2O3 > Ni/Al2O3. Among the catalysts, Mo/Al2O3 was chosen as the potential catalyst as it rendered high deoxygenation conversion at 89 % and ester yield of 76 %.

Author Biographies

Cheryl-Low Yi Lian, University of Malaya (UM)

Nonotechnology & Catalysis Research Centre (NANOCAT)

Lee Hwei Voon, University of Malaya (UM)

Nonotechnology & Catalysis Research Centre (NANOCAT)

References

P. Nagendramma, S. Kaul, Renew. Sustainable Energy Rev. 16(1) (2012) 764.

S. El Khatib, S. Hanafi, M. Arief, E. Al-Amrousi, Petrol. Sci. Technol. 5(2) (2015) 59.

J. Salimon, N. Salih, E. Yousif, Eur. J. Lipid Sci. Tech. 112(5) (2010) 519.

H.M. Mobarak, E.N. Mohamad, H.H. Masjuki, M.A. Kalam, K.A.H. Al Mahmud, M. Habibullah, A.M. Ashraful, Renew. Sustainable Energy Rev. 33 (2014) 34.

C.S. Madankar, A.K.Dalai, S.N. Naik, Ind. Crop. and Prod. 44 (2013) 139.

Y.S. Ooi, R. Zakaria, A.R. Mohamed, S. Bhatia, Biomass Bioenerg. 27(5) (2004) 477.

S.M. Sajjadi, M. Haghighi, A.A. Eslami, F. Rahmani, J. Sol-Gel Sci. Techn. 67(3) (2013) 601.

N. Rahemi, M. Haghighi, A.A. Babaluo, M.F. Jafari, S. Khorram, Int. J. Hydrogen Energ. 38(36) (2013) 16048.

L. Ji, J. Lin, H. Zeng, J. Phys. Chem. B 104(8) (2000) 1783.

W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, G.A. Pankina, P. Fongarland, A.Y. Khodakov, J. Catal. 252(2) (2007) 215.

Y. Cui, N. Liu, Y. Xia, J. Lv, S. Zheng, N. Xue, L. Peng, X. Guo, W.Ding, J. Mol. Catal. A Chem. 394 (2014) 1.

W.Z. Lang, C.L. Hu, L.F. Chu, Y.J Guo, RSC Adv. 4(70) (2014) 37107.

M.I. Dar, S. Sampath, S.A Shivashankar, J. Mater. Chem. 22(42) (2012) 22418.

N. Mukherjee, S. Ahammed, S. Bhadra, B.C. Ranu, Green Chem., 15(2) (2013) 389.

S.M. Pudi, P. Biswas, S. Kumar, B. Sarkar, J. Brazil. Chem. Soc. 26 (2015) 1551.

Y. Du, R. Chen, Chem. Biochem. Eng. Q., 21(3) (2007) 251.

J. SongáChen, X. WenáLou, Chem. Commun. 46(37) 2010) 6906.

S. Badoga, R.V. Sharma, A.K. Dalai, J. Adjaye, Ind. Eng. Chem. Res. 53(49) (2014) 18729.

J. Ryczkowski, Catal. Today, 68(4) (2001) 263.

P. Estifaee, M. Haghighi, N. Mohammad, F. Rahmani, Ultrason. Sonochem. 21(3) (2014) 1155.

M. Sharifi, M. Haghighi, F. Rahmani, S. Karimipour, J. Nat. Gas Sci. Eng. 21 (2014) 993.

S.R. Yahyavi, M. Haghighi, S. Shafiei, M. Abdollahifar, F. Rahmani, Energ. Convers. Manage. 97 (2015) 273.

N. Rahemi, M. Haghighi, A.A. Babaluo, M.F,. Jafari, S. Allahyari, Korean J. Chem. Eng. 31(9) (2014) 1553.

A. Ramli, M. Farooq, MJAS, 19(1) (2015) 8.

K.V.R Chary, K. Reddy, Rajender, G. Kishan, J.W. Niemantsverdriet, G. Mestl, J. Catal. 226(2) (2004) 283.

G. Mitran, O. Pavel, React. Kinet. Mech. Cat. 114(1) (2015) 197.

Y. Ding, X. Zhang, H. Zhu, J. Zhu, J. Mater. Chem. C 2(5) (2014) 946.

G. Marcelo, A. Munoz-Bonilla, J. Rodriguez-Hernandez, M. Fernandez-Garcia, Polym. Chem. 4(3) (2013) 558.

N.A. Gomez, R. Abonia, H. Cadavid, I.H. Vargas, J. Brazil. Chem. Soc. 22(12) (2011) 2292.

C.M.P. de Souza, D.P.G. dos Santos, C.P. de Santana, D.P. Santana, Afr. J. Pharm. Pharmacol. 8(33) (2014) 824.

M.L.S. Albuquerque, I. Guedes, J.P. Alcantara, S.G.C. Moreira, Vib. Spectrosc. 33(1–2) (2003) 127.

K.L. Lei, C.F. Chow, K.C. Tsang, E.N.Y. Lei, V.A.L. Roy, M.H.W. Lam, C.S. Lee, E.Y.B. Pun, J. Li, J. Mater. Chem. 20(35) (2010) 7526.

A.M. Gumel, M.S.M. Annuar, T. Heidelberg, PLoS ONE 7(9) (2012) e45214.

M. Tariq, S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid, M.A. Khan, Fuel Process. Technol. 92(3) (2011) 336.

I.P. Soares, T.F. Rezende, R.C. Silva, E.V.R. Castro, R. Vinicius, I.C.P. Fortes, Energ. Fuel. 22(3) (2008) 2079.

N. Asikin-Mijan, H.V Lee., Y.H. Taufiq-Yap, J.C. Juan, N.A. Rahman, J. Anal. Appl. Pyrol. 117 (2016) 46.

J.G. Immer, M.J. Kelly, and H.H. Lamb, Appl. Catal. A-Gen. 375(1) (2010) 34.

J.P. Ford, J.G. Immer, H.H. Lamb, Top. Catal. 55(3-4) (2012) 175.

L. Hermida, A.Z. Abdullah, A.R Mohamed., Renew. Sust. Energ. Rev. 42 (2015) 1223.

S. Lestari, P. Mäki-Arvela, J. Beltramini, G.Q.M. Lu, D.Y. Murzin, ChemSusChem 2(12) (2009) 1109.

Å. JÄ™czmionek, K. Porzycka-Semczuk, Fuel 128 (2014) 296.

F. Mariño, M. Boveri, G. Baronetti, M. Laborde, Int. J. Hydrogen Energ. 26(7) (2001) 665.

A. Szterk, M. Roszko, E. Sosińska, D. Derewiaka, P.P. Lewicki, J. Am. Oil Chem. Soc. 87(6) (2010) 637.

O.S. Joo, K.D. Jung, S.H. Han, B. Kor. Chem. Soc. 23(8) (2002) 1103.

Downloads

Published

2017-04-05

How to Cite

Yi Lian, C.-L., Hwei Voon, L., & Abd Hamid, S. (2017). Conversion of oleic acid model compound to biolubricant base oil using Al2O3 supported metal oxide catalyst. Malaysian Journal of Catalysis, 2(2). https://doi.org/10.11113/mjcat.v2n2.58

Issue

Section

Research Article