Production of syngas via CO2 reforming of methane over Ni/SBA-15


  • Nurul Ainirazali Universiti Malaysia Pahang
  • Herma Dina Setiabudi
  • Dai-Viet N.Vo
  • Siti Nuraihan Mohamad Arof



CO2 reforming, Syngas, Ni/SBA-15, Ni dispersion


In the present study, the effect of Ni loading (1-7 wt.%) on the properties of Ni/SBA-15 and CO2 reforming of methane were studied. Ni/SBA-15 catalyst was synthesized by sol-gel method and was characterized by XRD, BET, TEM and FTIR to study the physicochemical properties. The catalyst was evaluated for CO2 reforming at 800 oC using fixed bed reactor. The N2 adsorption-desorption results confirmed that all the samples the present of ordered mesoporous structure of SBA-15, where the surface area, pore volume and pore diameter were decreased as the Ni loading increased. Moreover, the dispersion of Ni species and formation of NiO crystallite size are depending on the wt.% of Ni loading on SBA-15 support which directly related to the substitution of surface silanol group with Ni species. Catalytic activity test revealed that the optimum Ni loading was at 3 wt.% with the CH4 conversion, CO2 conversion and H2/CO ratio was about 55%, 47%, and 0.99, respectively. Meanwhile, higher Ni loading (7 wt.%) decreased the catalytic performance of catalyst due to the agglomeration of Ni particles on the SBA-15 surfaces which led to easier sintering and carbon deposition on the catalyst surfaces. 

Author Biography

Nurul Ainirazali, Universiti Malaysia Pahang

Faculty of Chemical & Natural Resources Engineering


Z. Alipour, M. Rezaei, F. Meshkani, Fuel 129 (2014) 197.

E.C. Faria, R.C.R. Neto, R.C. Colman, F.B. Noronha, Catal. Today 228 (2014) 138.

F. Rahmani, M. Haghighi, Y. Vafaeian, P. Estifaee, J. Power Sources 272 (2014) 816.

W. Yang, H. Liu, Y. Li, H. Wu, D. He, Int. J. Hydrogen Energy 41 (2015) 1513-1523.

A. Vita, G. Cristiano, C. Italiano, L. Pino, S. Specchia, Appl. Catal. B 162 (2015) 551.

F. Wang, L. Xu, W. Shi, J. CO2 Util. J. CO2 Util. 16 (2016) 318.

H.D. Setiabudi, K.H. Lim, N. Ainirazali, S.Y. Chin, N.H.N. Kamarudin, J. Mater. Environ. Sci. 8 (2017) 573

Q. Tang, S. Hu, Y. Chen, Z. Guo, Y. Hu, Y. Chen, Y. Yang, Microporous Mesoporous Mater. 132 (2010) 501-509.

M. Tao, X. Meng, Y. Lv, Z. Bian, Z. Xin, Fuel 165 (2016) 289.

A.K. Medina-Mendoza, M.A. Cortés-Jácome, J.A. Toledo-Antonio, C. Angeles-Chávez, E. López-Salinas, I. Cuauhtémoc-López, M.C. Barrera, J. Escobar, J. Navarrete, I. Hernández, Appl. Catal. B 106 (2011) 14.

Å. Laskowski, M. Laskowska, M. BaÅ‚anda, M. Fitta, J. Kwiatkowska, K. DziliÅ„ski, A. Karczmarska, Microporous Mesoporous Mater. 200 (2014) 253.

M.A.A. Aziz, A.A. Jalil, S. Triwahyono, M.W.A. Saad, Chem. Eng. J. 260 (2015) 757.

N. Anand, P. Ramudu, K.H.P. Reddy, K.S.R. Rao, B. Jagadeesh, V.S.P. Babu, D.R. Burri, Appl. Catal. A 454 (2013) 119.

R. Ghorbani-Vaghei, S. Hemmati, H. Veisi, J. Mol. Catal. A 393 (2014) 240.

B. Lu, K. Kawamoto, Fuel 103 (2013) 699.

E.G. Mahoney, J.M. Pusel, S.M. Stagg-Williams, S. Faraji, J. CO2 Util. 6 (2014) 40.

X.-Y. Quek, D. Liu, W.N.E. Cheo, H. Wang, Y. Chen, Y. Yang, Appl. Catal. B 95 (2010) 374.

Z. Ma, X. Wang, S. Wei, H. Yang, F. Zhang, P. Wang, M. Xie, J. Ma, Catal. Com. 39 (2013) 24.

W. Ye, Z. Lin, B. Dong, J. Kang, X. Zheng, X. Wang, Mater. Sci. App. 2 (2011) 661.

Y.T. Fang, T. Liu, Z. C. Zhang, X. N. Gao, Renew. Energy 63 (2014) 755.

V. Subbaramaiah, V. C. Srivastava, I.D. Mall, J. of Hazard. Mater. 248-249 (2013) 355.




How to Cite

Ainirazali, N., Setiabudi, H. D., N.Vo, D.-V., & Mohamad Arof, S. N. (2017). Production of syngas via CO2 reforming of methane over Ni/SBA-15. Malaysian Journal of Catalysis, 2(2).



Research Article