Synthesis of mesoporous SBA-15/ionic liquid nanocomposites for the selective oxidation of 2,3,6-trimethylphenol


  • Nurliana Roslan
  • Hendrik O. Lintang
  • Salasiah Endud
  • Mohd Bakri Bakar
  • Zainab Ramli


Ionic liquid, SBA-15, Nanocomposites, Oxidation, 2, 3, 6-Trimethylphenol


We report the grafting of ILs onto mesoporous silica SBA-15 nanomaterial with a larger surface area of 737.96 m2/g and an interpore distance of 10.68 nm for selective oxidation of 2,3,6-trimethylphenol (TMP). IL, 1-(3-triethoxysilylpropyl)-3-methylimidazolium chloride was grafted with concentration of 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mmol onto SBA-15 via a sol-gel method to obtain IL-SBA-15 nanocomposites. The appearance of vibration bands of C­−H (~2900 cm-1), C=C (~1630 cm-1) and C=N bonds (~1570 cm-1) in the FTIR spectra indicates that the ILs were successfully grafted on the surface of SBA-15. The total surface area, total pore volume and BJH pore size distribution of all IL-SBA-15 nanocomposites decreasing with the increasing amount of IL from 393.27 to 354.39 m2/g which indicated that the pore channel and/or surface of SBA-15 were occupied by IL without significant reduction of the quality. It was found that the grafted amount of IL on SBA-15 nanocomposites increased from 0.60 to 0.97 mmol/g when amount of ILs content in the mixture was increased from 1.0 to 10.0 mmol. The IL-SBA-15 nanocomposites were tested as a heterogeneous catalyst for oxidation reaction of 2,3,6-TMP to 2,3,5-trimethylbenzoquinone (TMBQ), employing tert-butyl hydroperoxide (TBHP) as an oxidant at 80 °C for 24 hours. All IL-SBA-15 nanocomposites gave 100% selectivity towards 2,3,5-TMBQ in which IL-SBA-15 with 1.0 mmol of IL gave the highest conversion of TMP (37%).


C.V. Doorslaer, J. Wahlen, P. Mertens, K. Binnemans, D.D. Vos, Dalton Trans. 39 (2010) 8377.

R. Kurane, J. Jadhav, S. Khanapure, R. Salunkhe, G. Rashinkar, Green Chem 15 (2013) 1849.

L-W. Xu, M-S. Yang, J-X. Jiang, H-Y. Qiu, G-Q. Lai, Cent. Eur. J. Chem 4 (2007) 1073-1083.

X. Zhou, A. Duan, Z. Zhao, Y. Gong, H. Wu, Y. Wei, G. Jiang, J. Liu, Mater. Lett. 133 (2014) 228.

A.S. Cattaneo, C. Ferrara, D.C. Villa, S. Angioni, C. Milanese, D. Capsoni, S. Grandi, P. Mustarelli, V. Allodi, G. Mariotto, S. Brutti, E. Quartarone, Micropor. Mesopor. Mat. 291 (2016) 219.

G.M. Ziarani, N. Lashgari, A. Badiei, J. Mol. Catal. A: Chem. 397 (2015) 166.

J. Zhang, G-F. Zhao, Z. Popovic, Y. Lu, Y. Liu, Mater. Res. Bull. 45 (2010) 1648.

C. Saux, L.R. Pizzio, L.B. Pierella, Appl. Catal. A: Gen. 452 (2013) 17.

K. Moller, G. Wienhofer, F. Westerhaus, K. Junge, M. Beller, Catal. Today 173 (2011) 68.

H. Sun, X. Li, J. Sundermeyer, J. Mol. Catal. A: Chem. 240 (2005) 119.

S. Kumar, S.L. Jain, New J. Chem. 37 (2013) 3057.

D. Zhou, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 (1988) 6024.

X. Sheng, Z. Yuming, Y. Yang, Y. Zhang, Z. Zhang, S. Zhou, X.Fu, S. Zhao, RSC Adv. 4 (2014) 30697.

X. Wan, M. Tian, K.H. Row, J. Anal. Chem. 65 (2010) 798.

Q. Wang, G.A. Baker, S.N. Baker, L.A. Colón, The Analyst 131 (2006) 1000.

A.R. Kiasat, M.J. Nasab, RSC Adv.5 (2015) 75491.

P. Sharma, A.P. Singh, RSC Adv. 4 (2014) 58467.

W. He, D. Wu, J. Li, K. Zhang, Y. Xiang, L. Long, S. Qin, J. Yu, Q. Zhang, Bull. Korean Chem. Soc. 34 (2013) 2747.

W. He, Y. Yao, M. He, Z. Kai, L. Long, M. Zhang, S. Qin, J. Yu, Bull. Korean Chem. Soc. 34 (2013) 112.

Sing, Physical and Biophysical Chemistry Division Commission on Colloid and Surface Chemistry Including Catalysis, Pure Appl. Chem. 57 (1985) 603.

Y. Liu, J. Peng, S. Zhai, J. Li, J. Mao, M. Li, H. Qiu, G. Lai, Eur. J. Inorg. Chem. (2006) 2947.

W. Ding, W. Zhu, J. Xiong, L. Yong, A. Wei, M. Zhang, H. Li, Chem. Eng. J. 266 (2015) 213.




How to Cite

Roslan, N., Lintang, H. O., Endud, S., Bakar, M. B., & Ramli, Z. (2016). Synthesis of mesoporous SBA-15/ionic liquid nanocomposites for the selective oxidation of 2,3,6-trimethylphenol. Malaysian Journal of Catalysis, 1(1). Retrieved from



Research Article