Stoichiometric effects of feed ratio on syngas production from CO2 reforming of methane over SmCoO3 perovskite catalyst
DOI:
https://doi.org/10.11113/mjcat.v2n1.23Keywords:
Dry reforming, Methane, Perovskite, SmCoO3, SyngasAbstract
An effective way of consuming the two most dominant gases (CO2 and CH4) which are heavily linked with heat waves across the globe is the CO2 reforming of methane reaction. This study describes the use of sol-gel citrate method to prepare SmCoO3 perovskite catalyst and thereafter, catalytic test was carried out on the methane reforming reaction platform to produce syngas. The physicochemical properties of SmCoO3 perovskite catalyst were determined pre-activity evaluation by TGA, Â N2 physisorption, EDX, XRD, and post-activity evaluation by EDX and TGA. Results from the pre-reaction characterization showed the formation of crystalline and monophasic perovskite structure, while the post-reaction characterization showed evidence of carbon species associated with methane reforming reactions. The catalytic reaction was performed at atmospheric pressure on a reactor bed using a gas hourly space velocity of 30,000 h-1 and the activity was studied at stoichiometry (CO2: CH4 1:1), below (CO2: CH4 1:2)Â and above stoichiometry (CO2: CH4 2:1)Â of reactant gas at reaction temperature of 1023 K. Results showed highest CO2 and CH4 conversion of 85% and 84% respectively and optimum syngas yield (H2: CO) of 60% and 57% respectively at stoichiometry ratio.
Â
References
F.A. J. Al-Doghachi, U. Rashid, Y. H. Taufiq-Yap, RSC Adv. 6 (2016) 10372.
E. Ruckenstein, Y. H. Hu, Appl. Catal. A. 133, (1995) 149.
T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido, K. Takehira, Appl. Catal. A. 183, Jul. (1999) 273.
J. K. Kim, S. S. Kim, W.J. Kim, Mater. Lett., 59, (2005) 4006.
X. G. Zheng, S. Y. Tan, L. C. Dong, S.-B. Li, H. M. Chen, S.A. Wei, Fuel Process. Technol. 137, (2015) 250.
G. S. Gallego, J. G. MarÃn, C. Batiot-Dupeyrat, J. Barrault, and F. Mondragón, Appl. Catal. A Gen. 369, (2009) 97.
E. Yang, Y. Noh, S. Ramesh, S. S. Lim, D. J. Moon, Fuel Process. Technol. 134 ( 2015) 404.
G. Valderrama, C. Urbina de Navarro, M. R. Goldwasser, J. Power Sources 234 (2013) 31.
F. Touahra, A. Rabahi, R. Chebout, A. Boudjemaa, D. Lerari, M. Sehailia, D. Halliche, K. Bachari, Int. J. Hydrogen Energy (2016).
H. Fjellvåg, O. Hansteen, B. . Tilset, A. Olafsen, N. Sakai, H. Seim, Thermochim. Acta, 256, May (1995) 75.
L. Bocher, M. H. Aguirre, R. Robert, M. Trottmann, D. Logvinovich, P. Hug, A. Weidenkaff, Thermochim. Acta 457, (2007) 11.
B. Sathyamoorthy, P. M. Md Gazzali, C. Murugesan, G. Chandrasekaran, Mater. Res. Bull. 53 (2014) 169.
I. Istadi, N. A. S. Amin, Chem. Eng. Sci. 62, (2007) 6568.
Z. Alipour, M. Rezaei, and F. Meshkani, J. Ind. Eng. Chem. 20 (2014) 2858.
R. Pereñiguez, V. M. Gonzalez-delaCruz, A. Caballero, J. P. Holgado Appl. Catal. B Environ., 123–124 (2012) 324.
N. N. Sazonova, V. A. Sadykov, A. S. Bobin, S. A. Pokrovskaya, E. L. Gubanova, C. Mirodatos, React. Kinet. Catal. Lett. 98, (2009) 35.
J. Dias, J. Power Sources. Vol. 137, (2004) 264.
V. V. Chesnokov, V. I. Zaikovskii, R. A. Buyanov, V. V. Molchanov, L. M. Plyasova, Catal. Today. 24 (1995) 265.
S. Wang and G. Q. M. Lu, J. Chem. Technol. Biotechnol., 595, ( 2000) 589.
Downloads
Published
How to Cite
Issue
Section
License
The Malaysian Journal of Catalysis publishes open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Â
The Department of Chemistry, Faculty of Science, UTM retains the Copyright on any research article published by Malaysian Journal of Catalysis.
Authors grant Malaysian Journal of Catalysis a license to publish the article and identify itself as the original publisher.