Effect of ceria/surfactant molar ratios on the formation of mesoporous ceria nanoparticles and its application in CO2 capture

Authors

  • Amirul Hafiiz Ruhaimi
  • Haziq Fikri Zaini
  • Muhammad Arif Ab Aziz

DOI:

https://doi.org/10.11113/mjcat.v4n2.149

Keywords:

Mesoporous ceria nanoparticle, CO2 adsorption, hydrothermal

Abstract

Large quantities of carbon dioxide (CO2) in a mixture of natural gas/CO2 can reduce the heating value of the mixture, reducing the thermal efficiency of a gas engine. Therefore, CO2 should be separated from the natural gas. CO2 separation through adsorption method has several advantages, such as high energy efficiency, easy operation, low cost, and availability of different adsorbents. There is a need to develop adsorbents with a porous structure. Several reaction parameters influence the synthesis of porous adsorbents, including temperature, solvent, stirring rates, co-surfactant, pH, and metal to surfactant molar ratio. In this study, the effect of varying ceria to surfactant molar ratio on the synthesis of mesoporous ceria nanoparticles (MCNs) was investigated for CO2 adsorption. Using cetyltrimethylammonium bromide (CTAB) as a surfactant agent, MCNs were prepared by varying ceria to CTAB molar ratio (0.5, 1.0, 1.5, and 2.0) via a simple hydrothermal method. All the MCN samples showed a bimodal mesoporous structure around 18–30 nm with pore sizes of 3.7 nm. Thermogravimetric analysis showed that the MCNs had weight loss of < 5% when heated up to 1173 K, indicating high thermal stability. MCN-1.0 showed the highest CO2 adsorption at 0.37 mmol/g, followed by MCN-1.5 and MCN-2.0 at 1 bar and 298 K. We believe that this study will expand the knowledge of ceria material properties towards CO2 adsorption and will be useful in material selection for industrial CO2 capture.

References

M. Kraussler, P. Schindler and H. Hofbauer, Bioresour Technol. 237 (2017) 39.

L. Wang, C. Shi, L. Pan, X. Zhang and J.J. Zou, Nanoscale. 12 (2020) 4790.

C. Li, X. Liu, G. Lu and Y. Wang, Chinese J. Catal. 35(8) (2014)1364.

C. Slostowski, S. Marre, P. Dagault, O. Babot, T. Toupance and C. Aymonier, J. CO2 Util. 20 (2017) 52.

P. Li, R. Chen, Y. Lin and W. Li, Chem. Eng. J. 404 (2021) 126459.

H. Yu, X. Wang, Z. Shu, M. Fujii and C. Song, Front. Chem. Sci. Eng., 12 (2018) 83.

C.T. Campbell and C.H.F. Penden, Science. 309 (2005) 713.

A. Alonso, J. Moral-Vico, A.A. Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, A. Sánchez and X. Font, Sci. Total Environ. 595 (2017) 51.

A.A. Azmi and M.A.A Aziz, J. Environ. Chem. Eng. 7 (2019) 103022.

W. Gao, T. Zhou, B. Louis and Q. Wang, Catalysts. 7 (2017) 116.

A.M. Alkadhem, M.A.A. Elgzoly and S.A. Onaizi, J. Environ. Chem. Eng. 8 (2020) 103968.

S. Jin, K.J. Ko and C.H. Lee, Chem. Eng. J. 371 (2019) 64.

M.A.A. Aziz, A.A. Jalil and S. Triwahyono, Malay. J. Catal. 3 (2018) 43.

S. Gnanam and V. Rajendran, J. Nanopart. 2013 (2013) 839391.

A.A. Azmi, A.H. Ruhaimi and M.A.A. Aziz, Mater. Today Chem. 16 (2020) 100273.

A.A. Azmi, N. Ngadi, M.J. Kamaruddin, Z.Y. Zakaria, L.P. Teh, N.H.R Annuar, H.D. Setiabudi, A.A. Jalil and M.A.A. Aziz, Chem. Eng. Trans. 72 (2017) 403.

A. Maestro, E. Santini, D. Zabiegaj, S. Llamas, F. Ravera, L. Liggieri, F. Ortega, R.G. Rubio and E. Guzman, Adv. Condens. Matter Phys. (2015).

J. Zhang, B. Song, W. Peng, Y. Feng and B. Xu, Mater. Chem. Phys. 123(2) (2010) 606.

X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez and B.L. Su, Chem. Soc. Rev. 46(2) (2017) 481.

M. Thommes, Chem. Ing. Tech. 82 (2010) 1059.

J. Gong, F. Meng, X. Yang, Z. Fan and H. Li, J. Alloys Compd. 689 (2016) 606.

Z.O.R.I.Å¢.A. Diaconeasa, L. Barbu-Tudoran, C. Coman, L. Leopold, A. Mesaros, O. Pop, D. RUGINÄ‚, R. ÅžTEFAN, F. TÄ‚BÄ‚RAN, S. Tripon and C. Socaciu, Rom. Biotechnol. Lett. 20 (2015) 10679.

M.S. Pujar, S.M. Hunagund, V.R. Desai, S. Patil and A.H. Sidarai, AIP Conf. Proc. 1942 (2018) 050026. .

K. Yoshikawa, H. Sato, M. Kaneeda and J.N. Kondo. J. CO2 Util. 8 (2014) 34.

N. Shehata, K. Meehan, M. Hudait and N.Jain, J. Nanopart. Res. 14 (2012) 1173.

E. Shoko, M. Smith and R.H. McKenzie, J. Phys-Condens. Mat. 22 (2010) 223201.

Downloads

Published

2020-11-15

How to Cite

Ruhaimi, A. H., Zaini, H. F., & Ab Aziz, M. A. (2020). Effect of ceria/surfactant molar ratios on the formation of mesoporous ceria nanoparticles and its application in CO2 capture. Malaysian Journal of Catalysis, 4(2). https://doi.org/10.11113/mjcat.v4n2.149

Issue

Section

Research Article