CO2 reforming of CH4 over Ni/SBA-15: Influence of Ni-loading methods

Authors

  • H.D. Setiabudi Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia.
  • N.S.A. Razak Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia.
  • F.R.M. Suhaimi Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia.
  • F.N. Pauzi Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia.

Keywords:

Ni-loading methods, Ni/SBA-15, Dry reforming, Ni-support interaction

Abstract

A series of Ni/SBA-15 catalysts were prepared with three different methods which are impregnation (IM), ion exchange (IE) and physical mixing (PM) for CO2 reforming of CH4. The XRD, BET, FTIR and TGA analyses showed that the quantity of Ni-support interaction (Ni-O-Si) by substitution of the OH with Ni species followed the order of Ni/SBA-15(IE) > Ni/SBA-15(IM) > Ni/SBA-15(PM), while the size of Ni particles and blockage of the pores increased with the order of Ni/SBA-15(IE) < Ni/SBA-15(IM) < Ni/SBA-15(PM). At temperature studied, the activity of catalysts followed the order of Ni/SBA-15(IE) ≈ Ni/SBA-15(IM) > Ni/SBA-15(PM), while the stability of catalysts followed the order of Ni/SBA-15(IE) > Ni/SBA-15(IM) > Ni/SBA-15(PM). The excellent performance of Ni/SBA-15(IE) was related with the higher formation of Ni-support interaction, which altered the properties of catalyst towards an excellent catalytic performance. Meanwhile, the lowest activity of Ni/SBA-15(PM) was related with the higher agglomeration of Ni particles that were decorating on the surface part of SBA-15 arose from the weaker Ni-support interaction. This study provides new perspectives on the Ni-based catalyst, particularly on the influence of Ni-loading methods on the properties and catalytic performance of Ni/SBA-15 towards CO2 reforming of CH4.

References

W. Yang, H. Liu, Y. Li, H. Wu, D. He, Int. J. Hydrogen Energy 41 (2016) 1513.

H. Liu, Y. Li, H. Wu, J. Liu, D. He, Chin. J. Catal. 36 (2015) 283.

D. Pakhare, J. Spivey, Chem. Soc. Rev. 43 (2014) 7813.

S.M. Sidik, S. Triwahyono, A.A. Jalil, M.A.A. Aziz, N.A.A. Fatah, L. P. Teh, J. CO2 Util. 13 (2016) 71.

Y. Vafaeian, M. Haghighi, S. Aghamohammadi, Energy Convers. Manage. 76 (2013) 1093.

Y. Zhang, X. Zhu, D. Mei, B. Ashford, X. Tu, Catal. Today 256 (2015) 80.

X. Zhang, Q. Zhang, N. Tsubaki, Y. Tan, Y. Han, Fuel 147 (2015) 243.

L. Yao, J. Shi, H. Xu, W. Shen, C. Hu, Fuel Process. Technol. 144 (2016) 1.

B. Lu, K. Kawamoto, Fuel 103 (2013) 699.

D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279 (1998) 548.

B.D. Cullity, Elements of X-ray Diffraction, Second Edition., Addison-Wesley, Reading, MA, 1978.

Y. Zhang, Y. Liu, G. Yang, S. Sun, N. Tsubaki, Appl Catal A, 321 (2007) 79.

H. Jian, M. Renxiong, G. Zhihua, S. Chaofeng, H. Wei, Chin. J. Catal. 33 (2012) 637.

N. Brodie-Linder, S. Le Caër, M.S. Alam, J.P. Renault, C. Alba-Simionesco, Phys. Chem. Chem. Phys. 12 (2010) 14188.

T. Tsoncheva, M. Järn. D. Paneva, M. Dimitrov, I. Mitov, Micropor. Mesopor. Mat. 137 (2011) 56.

F. Xia, E. Ou, L. Wang, J. Wang, Dye Pigments 76 (2008) 76.

H.D. Setiabudi, S. Triwahyono, A.A. Jalil, N.H.N. Kamarudin, M.A.A. Aziz, J. Nat. Gas Chem. 20 (2011) 477.

Q. Jing, H. Lou, J. Fei, Z. Hou, X. Zheng, Int. J. Hydrogen Energy 29 (2004) 1245.

Downloads

Published

2016-09-02

How to Cite

Setiabudi, H., Razak, N., Suhaimi, F., & Pauzi, F. (2016). CO2 reforming of CH4 over Ni/SBA-15: Influence of Ni-loading methods. Malaysian Journal of Catalysis, 1(1). Retrieved from https://mjcat.utm.my/index.php/MalJCat/article/view/10

Issue

Section

Research Article